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The goal is to find an approximate formula that relates the current change needed

in the QL and QS quadrupoles to the tune change requested by the user. The sec-

ondary goal is to verify that these equations are the same as those found in B15 and

B84.

I. INTRODUCTION

I will use the FODO lattice formulæ for calculating the current change that needs to be

sent to the QL and QS corrector quadrupoles given the user requested tune change. Note that

the Booster lattice is really FOFDOOD that comes from the combined function magnets

and have nothing to do with the QL’s or QS’s. I think that this approximation is probably

not that good but this has been used forever and so I will just use it.

II. THEORY

The approximation that I will use is two fold. They are:

• Replace the FOFDOOD cell with a FODO cell.

• Add QS to just before the F quadrupole and QL to just before the D quadrupole in the

FODO cell. In fact, when I examine the MADX description of Booster, QS is before the

short FD and QL is before the long DF section of each period the lattice. Note that

both QS and QL are wired to be horizontal focusing quadrupoles.

The approximation that I have discussed above is illustrated below in Eq. 1

FOFDOOD → QS(FO)QL(DO) (1)
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And for Booster, there are 24 such QS(FO)QL(DO) periods.

Therefore, in this model, I can use the results that is derived in Appendix A to show

that when I make a small tune change in either plane (dQH , dQV ), the required QS and QL

current needed is given bydQH

dQV

 =
N

4π

 βQSH βQLH

−βQSV −βQLV

 1
Bρ

[
∆B′L
∆I

]
IQS

1
Bρ

[
∆B′L
∆I

]
IQL

 (2)

where N = 24 is the number of QS(FO)QL(DO) periods, βQSH and βQSV are the values of

the horizontal and vertical β’s at the QS quadrupole respectively. Similarly for the β’s at

the QL quadrupole. Note that QS is at the same location as the F quadrupole and so its β

values are the same as that of the F quadrupole. Similarly for the QL and the D quadrupole.

Continuing, Bρ is the magnetic rigidity of the beam, [∆B′L/∆I] is the integrated focusing

strength of the quadrupole per ampere in units of (T ·m)/(m ·A) = T/A, IQS is the current

that needs to be supplied to the QS quadrupoles and IQL for the QL quadrupoles.

Note: In principle, [∆B′L/∆I] can have different values for QL and QS, but at least in

the Booster, they have the same value and is 2.489× 10−3 T/A.

It is obvious that there is a common factor in Eq. 2, and so I can define a new variable

Γ that takes the following form

Γ ≡ N

4π

1

Bρ

[
∆B′L

∆I

]
(3)

When I substitute this into Eq. 2, I getdQH

dQV

 = Γ

 βQSH βQLH

−βQSV −βQLV

IQS

IQL

 (4)

Thus, I can invert the matrix in Eq. 4 to obtain (IQS, IQL) in terms of (dQH , dQV )IQS

IQL

 =
1

Γ(βQSV βQLH − βQSHβQLV )

−βQLV −βQLH

βQSV βQSH

dQH

dQV

 (5)
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A. Example

Now, suppose I want to change the vertical tune by dQV but I want to keep dQH = 0.

Substituting this into Eq. 5, I get

IQS = − βQLH × dQV

Γ(βQSV βQLH − βQSHβQLV )

IQL = +
βQSH × dQV

Γ(βQSV βQLH − βQSHβQLV )
(6)

It’s interesting that the horizontal β’s determine the currents required in the corrector

quadrupoles for a vertical tune change!

III. MAPPING β’S TO LONG AND SHORT SECTIONS AND ALEX’S

PROGRAM

QL QS

F

D

FIG. 1. The ideal Booster lattice with all the QL’s and QS’s set to zero. Because of space constraints,

I can only indicate the location of the one of the F and D quadrupoles in this picture. Suffice to

say that there is a F at every βx peak and D at every βy peak. And in my model, QS is at the same

location as the F quadrupole and QL is at the same location as the D quadrupoles. But recall that

both QS and QL are horizontal focusing quadrupoles.

When I look at the ideal lattice shown in Fig. 1, I can map the β’s in the matrix of
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Eq. 2 by placing F quadrupoles at the locations where βx is at its maximum value and D

quadrupoles at the locations where βy is at its maximum value. Therefore, the mapping is

as follows:

βQLV = 20.4245 m

βQLH = 7.2985 m

βQSV = 5.2871 m

βQSH = 33.6431 m (7)

A. Mapping β’s to Alex’s B15 program

I will map what Alex uses in his program B15 to what I have derived. Looking at his

source code in CorrectorQuads.cpp, I have the following

Variable name Alex’s variable name

Γ×Bρ → commonFactor

βQLV → betaVLong

βQLH → betaHLong

βQSV → betaVShort

βQSH → betaHShort

The matrix in Eq. 4 when mapped to what Alex uses in his program is

Γ

 βQSH βQLH

−βQSV −βQLV

 → commonFactor

Bρ

 betaHShort betaHLong

−betaVShort −betaVLong


=

1

Bρ

b a

d c

 ≡ M (8)

Inverting Alex’s matrix M gives me

M−1 =
Bρ

ad− bc

−c a

d −b

 (9)
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and Alex’s solution is IQS

IQL

 =
Bρ

ad− bc

−c a

d −b

dQH

dQV

 (10)

1. Verifying the equations in B15 and B84

Like in the example that I had discussed in section IIA, I want to change the vertical

tune dQV but not dQH and so

IQS =
a

ad− bc
× dQV ×Bρ (11)

IQL =
−b

ad− bc
× dQV ×Bρ (12)

And similarly when I want to change the horizontal tune dQH but not dQV , I get

IQS =
−c

ad− bc
× dQH ×Bρ

IQL =
d

ad− bc
× dQH ×Bρ (13)

These are exactly the equations used in B15 and B84 for calculating the required current

changes for a given betatron tune change. Therefore, I have verified that the equations are

correct in these programs.
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Appendix A: Deriving the tune change from a perturbative lens

The Twiss matrix of a FODO cell (for example, see Ref. [1]) is given by

TFODO =

cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

 (A1)
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where α, β, γ and µ have their usual definitions. When I add in a thin lens at the start of

the FODO cell, I have

T ′
FODO =

 1 0

− 1
f

1

cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

 (A2)

where 1/f =
[
∆B′L
∆I

]
I/Bρ. When I multiply out Eq. A2, I get

T ′
FODO =

 cosµ+ α sinµ β sinµ

− 1
f
(cosµ+ α sinµ)− γ sinµ −β

f
sinµ+ cosµ− α sinµ

 (A3)

With the inclusion of the perturbation, the phase advance µ changes and I write the change

as µ → µ+ dµ = µ′. But for small enough dµ, the α, β and γ should still be the same and

so Eq. A1 becomes

T ′
FODO =

cosµ′ + α sinµ′ β sinµ′

−γ sinµ′ cosµ′ − α sinµ′

 (A4)

When I equate Eq. A3 to A4, I havecosµ′ + α sinµ′ β sinµ′

−γ sinµ′ cosµ′ − α sinµ′


=

 cosµ+ α sinµ β sinµ

− 1
f
(cosµ+ α sinµ)− γ sinµ −β

f
sinµ+ cosµ− α sinµ

 (A5)

I can judiciously select out the entries in Eq. A5 to work with. In this case, the (1, 1) and

(2, 2) elements of the matrices can be equated to give

cosµ′ + α sinµ′ = cosµ+ α sinµ

cosµ′ − α sinµ′ = −β

f
sinµ+ cosµ− α sinµ (A6)

And when I add these two equations together, I get

2 cosµ′ = 2 cosµ− β

f
sinµ (A7)
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I can expand Eq. A7 to first order in dµ to get

2(cosµ− dµ sinµ) = 2 cosµ− β

f
sinµ

⇒ dµ =
β

2f
(A8)

But dQ = dµ/2π and thus when I substitute this into Eq. A8, I obtain

dQ =
β

4πf
(A9)

a. Orthogonal plane effects

Now that I have Eq. A9, I can calculate what happens to the betatron tune when the

corrector quadrupole current is changed. Both planes are affected because the quadrupole

focuses in one plane and defocuses in the other.

For an F quadrupole (both QS and QL quadrupoles are F quadrupoles) that has focal

length fF and in this case, the change in the betatron tunes of both planes is

dQH =
βFH

4πfF

dQV = − βFV

4πfF
(A10)

where βFH and βFV are the values of the horizontal and vertical β’s at the F quadrupole

respectively.

Therefore, when I apply Eq. A10 to one QS(FO)QL(DO) cell to take into account the

effect of both QS and QL, I get by summing both their effects to obtain

dQH =
βQSH
4πfQS

+
βQLH
4πfQL

dQV = − βQSV
4πfQS

− βQLV
4πfQL

(A11)

where fQS is the focal length of the QS quadrupole and βQSH and βQSV are the values of

the horizontal and vertical β’s at the QS quadrupole respectively. The variables for the QL

quadrupole are named similarly.
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I can write Eq. A11 in matrix formdQH

dQV

 =
1

4π

 βQSH βQLH

−βQSV −βQLV

 1
fQS

1
fQL


=

1

4π

 βQSH βQLH

−βQSV −βQLV

 1
Bρ

[
∆B′L
∆I

]
IQS

1
Bρ

[
∆B′L
∆I

]
IQL

 (A12)

Notice that I have explicitly put in the QS current IQS and QL current IQL.

When the same currents IQS and IQL are applied to every QS(FO)QL(DO) cell in the lattice

and there are N cells, then I just sum all the tune change from every cell to arrive atdQH

dQV

 =
N

4π

 βQSH βQLH

−βQSV −βQLV

 1
Bρ

[
∆B′L
∆I

]
IQS

1
Bρ

[
∆B′L
∆I

]
IQL

 (A13)

Thus, Eq. A13 is the formula that I will use in section II.

[1] H.Wiedemann. page 245. Springer, 3rd edition, 2007.


